
|
   
|

|
  
|
|
|
|
Measuring Earthquakes
United States Geological Service (USGS)
03.13.01
The vibrations produced by earthquakes are detected, recorded, and measured by instruments call seismographs. The zig-zag line made by a seismograph, called a "seismogram," reflects the changing intensity of the vibrations by responding to the motion of the ground surface beneath the instrument. From the data expressed in seismograms, scientists can determine the time, the epicenter, the focal depth, and the type of faulting of an earthquake and can estimate how much energy was released. The two general types of vibrations produced by earthquakes are surface waves, which travel along the Earth's surface, and body waves, which travel through the Earth. Surface waves usually have the strongest vibrations and probably cause most of the damage done by earthquakes. Body waves are of two types, compressional and shear. Both types pass through the Earth's interior from the focus of an earthquake to distant points on the surface, but only compressional waves travel through the Earth's molten core. Because compressional waves travel at great speeds and ordinarily reach the surface first, they are often called "primary waves" or simply "P" waves. P waves push tiny particles of Earth material directly ahead of them or displace the particles directly behind their line of travel. Shear waves do not travel as rapidly through the Earth's crust and mantle as do compressional waves, and because they ordinarily reach the surface later, they are called "secondary" or "S" waves. Instead of affecting material directly behind or ahead of their line of travel, shear waves displace material at right angles to their path and therefore sometimes called "transverse" waves.
|
|
|
|

|
CLICK HERE for more information!
  
|
|
|
|
Earthquake Hazard Program United States Geological Service pubs.usgs.gov
|
|
|
|

|
©2001 The Aurora Collection, Inc.
All Rights Reserved.
Site Development by:
Interactive Multimedia. Inc.
|
|
|